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Abstract 

 

This paper offers an alternative to determine reliability-

centered maintenance (RCM) schemes for replaceable 

systems, when replacement times are censored and only 

the information that maintenance technicians, from the 

subjectivity of their experience, is available. Using 

differential entropy in information theory, and exploiting 

Lagrangian optimization algorithms, a Generalized 

Probability Density of Maximum Entropy (GPDME) is 

extracted. Lagrangian techniques provide a set of 

parameters that characterize the GPDME, the estimation 

of the parameters is done by first order perturbation of the 

integral of non-central moments, with which, the GPDME 

is typically built. In the emerging industry, RCM 

maintenance plans are not a common standard, in an 

attempt to put into practice, the benefits of RCM to this 

industrial segment, a case study, where the presented 

methodology was applied is provided. In the discussion 

and conclusions section, the areas of opportunity that are 

observed in the methodology presented in this work are 

adressed. 
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Resumen 

 

Este trabajo ofrece una alternativa para determinar 

esquemas de mantenimiento centrados en la fiabilidad 

(RCM) para sistemas reemplazables, cuando los tiempos 

de sustitución están censurados y sólo se dispone de la 

información que los técnicos de mantenimiento, a partir de 

la subjetividad de su experiencia. Utilizando la entropía 

diferencial de la teoría de la información, y explotando los 

algoritmos de optimización lagrangianos, se extrae una 

Densidad de Probabilidad Generalizada de Máxima 

Entropía (GPDME). Las técnicas lagrangianas 

proporcionan un conjunto de parámetros que caracterizan 

la GPDME, la estimación de los parámetros se realiza 

mediante la perturbación de primer orden de la integral de 

momentos no centrales, con la que, típicamente, se 

construye la GPDME. En la industria emergente, los 

planes de mantenimiento RCM no son un estándar común, 

en un intento de poner en práctica, los beneficios de RCM 

a este segmento industrial, se proporciona un caso de 

estudio, donde se aplicó la metodología presentada. En la 

sección de discusión y conclusiones, se abordan las áreas 

de oportunidad que se observan en la metodología 

presentada en este trabajo. 
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Introduction 

 

In the reliability-centred maintenance (RCM) 

framework, it is common to have difficulties 

regarding the failure frequency of vital 

components used in industry. Usually 

maintenance records [2], information provided 

by manufacturers in the marketing of these 

components [3] and the experience of 

maintenance personnel are the primary sources 

for creating a maintenance plan.  

 

In practice, most of this data is either 

non-existent [1], relies on subjective views or is 

censored in the sense that the components have 

not failed. At the same time, maintenance plans 

represent an investment in fixed assets, 

personnel training and spare parts supply that 

sometimes exceeds what medium-sized 

companies can afford in the short term.  

 

It is in this segment that the need for 

reliability-based maintenance plans is detected, 

working primarily with very small samples, only 

censored data or personnel experience. With this 

information and the concepts of entropy in 

information theory, a generalized model is 

developed that describes the probability of 

failure of a severely reduced sample of failure 

data in industrial components.  

 

1. Problem Presentation 

 

One of the most widely used probability 

densities to study the failure frequency in the 

RCM framework is the Weibull [10], [13], the 

scale parameter is determined by the sample 

size, if the sample is very small, the Weibull 

probability density is still able to give reliable 

results on a reduced sample.  

 

On the other hand, if there is no failure 

data, the data is censored [13], therefore, the 

estimator for the Weibull probability density 

cannot be determined: 

 

�̂� = (
1

𝑟
∑ 𝑡𝑖

𝛽𝑛
𝑖=1 )

1 𝛽⁄

                                             (1) 

 

In (1), r is the number of data, being 

censored, r=0, which indeterminates the scale 

parameter. 

 

 

 

 

 

2.  General Objective 

 

To build a model that can estimate the 

probability of failure in industrial components 

from severely reduced samples or censored data 

samples, that is, in those replaceable components 

in which the failure has not yet occurred and the 

maintenance records are unreliable or non-

existent and we only have the experience of the 

maintenance personnel and the manufacturer's 

data. [2] [3] [4] [17] 

 

3.  Theoretical considerations.  

 

3.1. Reliability and the Weibull probability 

density 

 

If x is a Continuous Random Variable (C.R.V.) 

that records the time elapsed before having a 

failure in some replaceable artefact, η and β, 

non-zero positive real constants, we define η as 

scale parameter, and β as shape parameter, the 

Weibull probability distribution is given by: 

 

𝑓(𝑥) =
𝛽

𝜂
(
𝑥

𝜂
)
𝛽−1

𝑒
−(

𝑥

𝜂
)
𝛽

; 𝑥 ∈ [0,∞]                   (2) 

 

The literature related to sampling 

densities is abundant, however, in RCM [13], the 

Weibull represents a viable first option due to its 

analytical benefits when establishing it as a 

reliability model. Reliability is defined as:  

 

𝑅(𝑇) = 1 − 𝐹(𝑥 ≤ 𝑇)                                           (3) 

 

Where T is the Mean Time Before 

Failure (MTTF) and F(x≤T) is the cumulative 

probability function. It can be seen trivially that 

(1) and (2) lead to: 

 

𝑅(𝑇) = 𝑒
−(

𝑥

𝜂
)
𝛽

                                                      (4) 

 

Once reliability is available, the rest of 

the relevant functions for determining a 

reliability-centred maintenance scheme follow 

directly, as the MTTF in reliability is defined by 

means of:  

 

𝐸(𝑡) = ∫ 𝑅(𝑡)𝑑𝑡
∞

0
                                                   (5) 

 

However, as determined by equation (1), 

if the data are censored (which is to say that they 

are service data, not failure data), a reliability-

centred maintenance scheme cannot be 

fundamentally established [13].  
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In the following, an independent 

approach is developed, based on classical results 

from information theory, C. Shannon's 

differential entropy, functional analysis and 

probability in terms of Kolmogorov's axioms to 

obtain a generalized probability density that does 

not depend on failure data and can be interpreted 

in service data schemes. 

 

3.2. Fundamentals of information theory 

 

Entropy S quantifies the lack of information of a 

random experiment. If the experiment is 

governed by a probability distribution p_i then 

the function measuring the uncertainty is defined 

as: 

 

𝑆 = −𝑘∑ 𝑝𝑖 ln(𝑝𝑖)
𝑛
𝑖=1                                                  (6) 

 

and it is assumed that 0⩽p_i ⩽1 which 

ensures the monotonicity property of entropy: 

S⩾0 over the whole path of p_i, from a linear 

point of view, S represents a basis that 

diagonalize p ̂ [12]. Thus, when we possess the 

maximum information of the system, S reaches 

its minimum value. In this idea, S will reach its 

maximum value when all p_i are equiprobable. 

Following this hypothesis, we could assign 

probabilities by means of the relative frequency 

p_i=1/n which directly associates the entropy: 

S=kln(n), so that S grows in direct proportion to 

n in the mentioned case. In general, [5] [2] [14] 

the fundamental hypothesis of this work is based 

on the assumption that the entropy satisfies the 

following  

 

Definition: Maximum entropy principle: 

  

"The statistical entropy of a random 

system reaches the maximum compatible with 

the imposed constraints." 

 

The basic idea behind this principle is 

that there is no reason to privilege a particular 

state or event in a random experiment. Starting 

from a state of equiprobability, there is uniquely 

a probability density defined over the states 

accessible to entropy from the point of view of 

information theory. 

 

3.4. Optimisation and variational techniques. 

Euler-Lagrange equations.   

 

If one has a well-defined functional in some 

region of R^2, by considering the action on the 

functional defined with the re-parameterisation:  

 Y(x)=y(x)+εα(x) and varying the action 

with respect to the parameter ε, given that α(x) is 

an arbitrary function within the defined domain, 

one obtains the Euler equation:  

 
𝑑

𝑑𝑥

𝜕𝐹

𝜕𝑦′
−
𝜕𝐹

𝜕𝑥
= 0                                                  (7) 

 

By exploiting the properties of (7) in 

terms of an isoperimetric optimization problem 

it is possible to make an identification with the 

Lagrange multiplier optimization method [14], 

to extract a maximum entropy probability 

density.   

 

3.5. Generalised probability density 

 

Equation (7) can be used to define a functional 

when subjected to continuity conditions on its 

assumed random variable. In this sense, the 

Shanon entropy [5] [6] [17] can be defined as: 

 

𝑆(𝑃, 𝑃′) = −∫𝑓(𝑡)ln[𝑓(𝑡)]𝑑𝑡                           (8) 

 

Where f(t) is a probability density 

defined in equation (6) for the continuous case, 

and the integration extends over the entire 

domain of f(t).Subjecting (8) to the constraints: 

 

∫𝑓(𝑡)𝑑𝑡 = 1  

 

∫ 𝑡𝑘𝑓(𝑡)𝑑𝑡 = 𝜇𝑘                                                (9) 

 

Where 𝜇𝑘 is the k-th moment of f. 

Equations (8) and (9) can be stated as an 

optimization problem by Lagrange multipliers, 

the functional (or objective function) is 

constructed directly: 

 

𝐹(𝑓, 𝑓′, 𝑡) = −𝑓(𝑡) ln[𝑓(𝑡)] − ∑ 𝜆𝑘𝑡
𝑘𝑓(𝑡)𝑛

𝑖=1    (10) 

 

Where the 𝜆𝑘 are the Lagrange 

multipliers. Applying equation (7) to equation 

(10) gives:  

 

𝑓(𝑡) = 𝐴𝑒−𝜑(𝑡)                                                    (11) 

 

Where A is a normalisation constant and 

 

𝜑(𝑡) =1+∑ 𝜆𝑘𝑡
𝑘𝑓(𝑡)𝑛

𝑖=1                                      (12) 

 

To ensure convergence of the probability 

model, we need to require that:  

 

N=2m with m a [17] positive integer.   
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3.7. Lagrange multipliers 

 

We can obtain a set of equations from which to 

extract the Lagrange multipliers [9] [14]. One 

way to do this is to assume that φ(t) forms a basis 

of orthogonal functions, in which case, taking 

the derivative of (11), integrating over its entire 

domain and applying boundary conditions on the 

maximum entropy probability density, we get: 

 

∫
𝑑

𝑑𝑡
𝑓𝑑𝑡

∞

−∞
= 0                                                   (13) 

 

In other words:  

 

𝜆𝑘𝑘 ∑ ∫ 𝑡𝑘−1𝑓(𝑡)𝑑𝑡
∞

−∞
𝑁
𝑘=1 = 0                           (14) 

 

In the above formulation, one has a series 

of moments defined for each integer value of k. 

Likewise, the argument used leading to (14) can 

be extended if it is derived to the probability 

model, multiplied by t^n and integrated over its 

entire domain, the new parameter n will account 

for the constraints that can be imposed on the 

functional arising from the Euler-Lagrange 

equation, proceeding, one obtains:  

 

∫ 𝑡𝑛
𝑑

𝑑𝑥
𝑓𝑑𝑡

∞

−∞
= 𝜆𝑘𝑘 ∑ ∫ 𝑡𝑘+𝑛−1𝑓𝑑𝑡

∞

−∞
𝑁
𝑘=1    (15) 

 

It is important to note that (14) and (15) 

are series of moments when written explicitly, 

they are respectively:  

 

𝜆1 + 2𝜆2𝜇1 + 3𝜆3𝜇2 +⋯+𝑁𝜆𝑁𝜇𝑁−1 = 0  
 

𝜆1𝜇𝑛 + 2𝜆2𝜇𝑛+1…+𝑁𝜆𝑁𝜇𝑛+𝑁−1 = 𝑛𝜇𝑛−1  
 

Therefore, (14) and (15) form the core of 

the proposal presented in this article, from the 

theoretical perspective, [8] [9] [14] [17] since, in 

reality, (14) and (15) form a system of equations 

given by:  

 

(

𝜇1 ⋯ 𝜇𝑁−1
⋮ ⋱ ⋮

𝜇𝑁+1 ⋯ 𝜇2𝑁
)(

𝜆1
⋮

𝑁𝜆𝑁

) =

(

 
 

0
1
2𝜇2
⋮

(𝑁 + 1)𝜇𝑁)

 
 

  (16) 

 

In equation (16) it is then necessary to 

feed the moments operator with some reasonable 

estimate of the moments, and in such a case, 

proceed to solve the system of equations for the 

Lagrange multipliers, which are the parameters 

of the generalized probability model given in 

(11).  

The estimation of the moments of a 

probability density can be carried out through 

several alternatives, in this work the approach is 

based on estimating the moments by means of a 

non-central moment integral [12] [14], assuming 

that the generalized maximum entropy 

probability model does not deviate much from 

that obtained by means of a Weibull probability 

density. That is, it is assumed that there is a 

minimal perturbation [6], between the Weibull 

model and the Generalized probability model.  

 

4.  RCM methodology 

 

The usual reliability-centred maintenance 

schemes require identifying the characteristics 

and processes to which various components are 

subjected in various stages, with the aim of 

selecting the appropriate maintenance scheme 

that responds to the industrial process in which a 

component or a set of components that can be 

replaceable or repairable is working. Roughly 

speaking, the 6 usual stages of reliability-

focused maintenance are: [13]. 

 

1. Equipment selection 

2. Fault identification 

3. Define fault diagrams. Identify 

consequences. 

4. Maintenance strategy 

5. Reliability  

6. Reliability focused maintenance plan. 

 

In this paper, the focus is on the fifth 

stage. Reliability in the RCM scheme consists of 

selecting the best model that represents the 

probability of failure and building with it the 

whole reliability-centred maintenance scheme. 

In other words, the starting point is to select a 

specific component, identify its failure modes, 

understand the consequences of the failure of the 

selected equipment or component and propose a 

maintenance strategy based on the modelling of 

a probability density. 

 

Established in the fifth step above, the 

question arises, Is the sample large enough?  

 

In the following section we present an 

example where the scheme described in this 

paper was applied, the sample obtained was 

reinterpreted for the specific purposes of the case 

study and the development of the methodologies 

outlined in this section. 
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5.  Case Study 

 

The following data were obtained from the 

company Plásticos y Metales De Coahuila, and 

are the operating times in hours of valves used to 

control the pressure with which plastic is 

injected into various moulds. They represent an 

example of a system of replaceable parts and can 

be analysed within the schemes of reliability-

centred maintenance. 

 
23880 

24210 

27212 

25731 

25687 

28213 

25231 

21782 

33121 

25103 

 
Table 1  

 

The technician's experience indicates 

that the valves will fail between 23200 and 

27900 operating hours. 

 

5.1. Weibull analysis  

 

In the following it is assumed that the data 

provided is a sample of failure times. Also, all 

graphs provided from this point onwards are 

plotted in hours on the abscissa axis.  

 

In order to provide a reliability-centred 

maintenance scheme, by carrying out a Weibull 

parameter adjustment [10] using the maximum 

likelihood method. With the scale parameter at 

the mean of the data and the shape parameter 

equal to one, this initial data provides through 

the Newton-Rhapson method the values: 

 

η=26818.4; β=12.7290 

 

The Weibull probability density that with 

maximum likelihood represents the data in Table 

1 is thus: 

 

𝑊(𝑡) = 5.436 × 10−59𝑡11.729𝑒−4.27×10
−57𝑡12.73 

 

 

 
 

Graph 1 

 

The cumulative probability function is 

then: 

 

 
 
Graph 2 

 

5.2. Mathematical expectation, MTTF 

 

 We then proceed to determine the MTTF, since 

we have the reliability function, the MTTF turns 

out to be a value of critical importance for 

making decisions regarding the maintenance 

scheme focused on reliability, (5) provides it:  

 

𝐸(𝑇) =25676.21                                              (17) 

 

Likewise, the instantaneous failure 

frequency is given by: 

 

ℎ(𝑡) =
𝑑

𝑑𝑡
𝑙𝑛(𝑅(𝑡))                                             (18) 
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The instantaneous failure frequency, also 

known as the risk function, indicates the rate at 

which reliability decays as the time the device in 

question is in operation evolves. The risk 

function, like reliability, decreases abruptly after 

the MTTF, inducing a risk process if at least 

inspection measures are not taken at around 

26000 hours of valve operation. It is common 

practice not to wait for the valve to fail, but to 

replace it before any malfunction occurs. 

However, in Table 1 the data is interpreted as 

failure data, not service times. [1] 

 

5.3. Reliability-centred maintenance scheme. 

RCM 

 

With the data provided by the company Plásticos 

y Metales de Coahuila, the following reliability-

centred maintenance scheme is established. 

 
Weibull model parameters MTTF 

R(T) = e
−(

x

 η
)
β

  
η=26818.4 

 
~25700hrs 

 

 β=12.7290 h(t)>26000hrs 

 
Table 2 

 

Thus, it would be recommended to the 

company's management to replace the valves 

before 25000 hours of operation without waiting 

to reach the MTTF, as the risk of failure 

increases abruptly around 25700 hours. 

 

Furthermore, if we consider the value of 

the probability of failure at 28000 hours, we can 

see that it represents a high risk for the 

machinery: 

 

F (28000) =0.82293 

 

5.4. Reinterpreting the sample 

 

In this section we reinterpret the data to compare 

it with the results of the previous section. It is 

necessary to understand that what is being 

offered is an example of how to work with the 

maximum entropy model when the data are 

censored and only the expertise of the technician 

is available. In no way does the following 

scheme correspond to a complete approach on 

how to elaborate the estimation of the moments 

in equation (16), it is intended, however, to give 

an indicative idea of how to proceed once a 

complete theoretical scheme for the estimation 

of moments is available. 

 

In fact, the status and progress of the 

presented research is formally shown up to the 

momentum operator and the theoretical 

framework supporting the maximum entropy 

probability density. However, it is interesting to 

note that the scheme proposed through equation 

(16) to determine the Lagrange multipliers has 

remarkable utility even when only reasonable 

estimates of the first moments of the maximum 

entropy probability density are known. 

 

Since these are replacement times, no 

actual failure data is available and therefore the 

entire sample is censored, only the technician's 

experience is available. The usual RCM schemes 

suggest the use of a Weibull probability density, 

but when trying to run the estimation of the 

Weibull parameters, the problem already 

anticipated in the introduction is encountered. 

 

The alternative proposed is a probability 

density that comes from maximize entropy, i.e., 

a model identical to the one proposed in equation 

(11) is considered, and it is assumed that the 

Weibull probability density of service data can 

be used as an initial perturbation point to 

construct the probability density of maximum 

entropy.  

 

Such a choice in the model and equation 

(16) leads to consider some system of equations, 

previously estimating the moments of the 

function f(t), and of course, the question arises, 

how many terms to include in φ(t) to adequately 

represent the model? If one decides to include 

the mean, variance, skewness and kurtosis, the 

operator of moments is 4X4, however [9] [10] 

[11] [15] suggest considering the first four 

moments, even pointing out that when the 

information in the operator of moments is 

extremely difficult to obtain in the context of 

achieving a basis, which diagonalises the 

operator of moments, the first two moments are 

sufficient to determine in an acceptable way the 

probability density. In such a case, will have a 

system of 2X2 equations, which is much more 

computationally friendly to deal with. 

 

5.5. Estimation of moments  

 

To estimate the moments of the censored data 

[4], the MTTF obtained from the Weibull 

analysis will be used assuming that the mean and 

variance parameters do not deviate much from 

those predicted by the Weibull analysis [10] 

[12]. 
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The technician's experience indicates 

that the service times are made in the interval 

(24000,28000) in hours, from which the 

following values are obtained for the moment 

operator: 

 

𝜇1 =26818.4; 𝜇2 = 6079355.823 

 

Since no information is available, the 

variance has been estimated by the non-central 

moments formula, using the Weibull probability 

density [13][14][15], previously determined to 

locate the maximum entropy probability density:  
 

𝜇2 = ∫ (𝑡 − 𝜇1)
2𝑊[𝜂, 𝛽]𝑑𝑡

∞

0
+ ∑ |𝜙(𝜇𝑖)|

𝑁
𝑘=1   (19) 

     

The rest of the non-central moments, [4] 

[6] form a convergent residue such that |ϕ(𝜇𝑖)|
2 

→ 0 as we introduce more moments in the 

maximum entropy probability density [12] [16] 

[17]. Solving (16) with the estimated moments 

yields the model: 

 

𝑓(𝑡) = 𝐴e−(1+3.56901×10
−5𝑡+6.4271×10−10𝑡2)       (20) 

  

 

(20) is already a maximum entropy 

probability density. The normalization constant 

takes the value: 

 

𝐴 = 1/6741.17713646257  
 

whereby the non-parametric maximum 

entropy probability model has the graph: 

 

 
 
Graph 4 

 

Likewise, the reliability function has the 

following graphs 

 
 
Graph 3 

 

The MTTF obtainded from equation (5), 

for this distribution is therefore: 

 

𝐸(𝑇) =14600      

 

Thus, the MTTF indicates a situation of 

lack of maintenance, putting the components of 

the entire injection system at risk. In the same 

way as was done with the Weibull probability 

density, when evaluating the probability of 

failure in 28000 hours, the following is obtained:  

 

𝐹(28000) = 0.85746                                   (21) 

 

With both models, about 84% of the 

times when valves are allowed to operate above 

28000 hours, the probability of failure is very 

high. Thus, the conclusions of extreme operating 

times obtained with the Weibull can also be 

obtained with the maximum entropy model. 

 

However, having used only two moments 

in equation (16) it is possible that the model does 

not adequately represent the information 

provided, i.e. replacement times and technician 

experience. One way to indirectly see if the 

calculated probability actually represents the 

phenomenon being treated is provided by the 

hazard function [12] [13], equation (18), which 

indicates the rate at which reliability decreases 

as time evolves. It is in itself a way to predict 

how the reliability decreases as long as the 

components keep working, given that we have 

R(T), we can determine h(t) and observe if the 

rate at which it decreases around the MTTF is 

too steep, the graph of h(t) associated to the 

reliability calculated by maximum entropy is: 
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Graph 5 

 

It can be seen that at around 15500 hours 

of valve operation, the risk continues to 

decrease, practically at the same rate. This means 

that the proposed model can be improved by 

virtue of the risk function: "it is still possible that 

there is another model that better represents the 

information available". 

 

6.  Discussion and conclusions 

 

The state of the research indicates that it is 

possible to elaborate reliability-centred 

maintenance plans with the tool developed up to 

this point, further developments will strengthen 

the proposed schemes and will give much more 

certainty to the maintenance plans to be 

elaborated for the indicated industrial sector. 

However, the need for a more formal scheme to 

estimate the moments [15] [16] [18] that feed 

equation (16) is missing, the research line 

contains parallel work in fuzzy logic and 

stochastic parameter location algorithms, based 

on the convolution theorem [14].  

 

On the other hand, given that the formal 

language of probability is measure theory, one 

cannot rule out venturing into this field to extract 

the necessary tools to allow for a significant 

improvement of the results and future research 

planned in the present line of research. 
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